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attractor networks. ArtiWcial neural networks (ANNs),
sometimes referred to as *connectionist networks, are com-

putationalmodels based loosely on the neural architecture

of the brain. Over the past 20 years, ANNs have proven to

be a fruitful framework for modelling many aspects of

cognition, including perception, attention, learning and

memory, language, and executive control. A particular

type of ANN, called an attractor network, is central to

computational theories of consciousness, because at-

tractor networks can be analysed in terms of proper-

ties—such as temporal stability, and strength, quality,

and discreteness of representation—that have been

ascribed to conscious states. Some theories have gone so

far as to posit that attractor nets are the computational

substrate from which conscious states arise.

1. ArtiWcial neural networks

2. Attractor dynamics

3. Relationship between attractor states and conscious

states

4. Attractor networks and theories of consciousness

1. ArtiWcial neural networks

ANNs consist of a large number of simple, highly inter-

connected neuron-like processing units. Each processing

unit conveys an activation level, a scalar that is usually

thought to correspond to the rate of neural spiking.

Typically, activation levels are scaled to range between

0 (no spiking) to 1 (maximal spiking), andmight represent

the absence or presence of a visual feature, or the strength

of belief in some hypothesis. For example, if the process-

ing units—units for short—are part of a model of visual

information processing, activity of a particular unit might

denote the presence of the colour red at some location in

the visual Weld. If the units are part of amodel ofmemory,

activity of individual units might instead denote semantic

features of an item to be recalled.

Each unit receives input activation from a large num-

ber of other units, and produces output—its activation

level—that is a function of its inputs. A typical function

yields an output that grows monotonically with the

weighted sum of the inputs. The weights, or strength

of connectivity, can be thought of as reXecting the

relationship among features or hypotheses. If the pres-

ence of feature A implies the presence of feature B, then

the weight from A to B should be positive, and activa-

tion of A will tend to result in activation of B; if A

implies the absence of B, the weight from A to B should

be negative.

Units in an ANN can be interconnected to form two

basic architectures: feedforward and recurrent. In a feed-

forward architecture (Fig. A25a), activity Xows in one

direction, from input to output, as indicated by the

arrows. A feedforward network performs associative

mappings, and might be used, for instance, to map

visual representations to semantic representations. In a

recurrent architecture (Fig. A25b), units are connected

such that activity Xows bidirectionally, allowing the

output activity of a unit at one point in time to inXuence

its activity at a subsequent point in time. Recurrent

networks are often used to implement content-addres-

Fig. A25. (a) Feedforward architecture in which activity flows from the bottom layer of units to the top

layer. (b) Recurrent architecture in which activity flows in cycles.
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sible memories. The network is Wrst trained on a set of

items, and then when it is presented with a partial

featural description of one item, network dynamics Wll

in the missing features. Both feedforward and recurrent

networks can perform cued retrieval, but recurrent net-

works are more Xexible in that they allow any subset of

features to serve as a cue for the remaining features.

The activation state of a network with n units can be

characterized as a point in an n-dimensional space, and

temporal dynamics of a recurrent network can be de-

scribed as a time-varying trajectory through this state

space (Fig. A26a). An attractor network is a recurrent

ANN whose dynamics cause the network state to con-

verge to a Wxed point. That is, given an input—which

might represent a stimulus to be processed, or the

output of another ANN—the dynamics of the network

will cause the state to evolve over time to a stable value,

away from which the state will not wander

2. Attractor dynamics

The states to which the net might evolve are called

attractors. The attractors are typically sparse in the

state space. (Technically, attractors can also be limit

cycles—non-static, periodic trajectories—but attractor

net dynamics ordinarily produce only point attractors.)

The state space of an attractor net can be carved up

into attractor basins, regions of the state space in which

all starting points converge to the same attractor. Figure

A26b depicts a state space with three attractor basins

whose boundaries are marked by dotted lines, and some

trajectories that might be attained within each attractor

basin.

Attractor dynamics are achieved by many neural

network architectures, including HopWeld networks,

harmony networks, Boltzmann machines, adaptive res-

onance networks, and recurrent back-propagation net-

works. To ensure attractor dynamics, these popular

architectures require symmetry of connectivity: the con-

nection weight from processing unit A to unit B must be

the same as the weight from B to A. Given this restric-

tion, the dynamics of the networks can be characterized

as performing local optimization—minimizing energy,

or equivalently, maximizing harmony. Consider the

attractor state space of Fig. A26b, and add an additional

dimension representing harmony, a measure of the

goodness of a state, as shown in Fig. A26c.

The attractors are at points of maximum harmony,

and the network dynamics ensure that harmony is non-

decreasing. Because the net is climbing uphill in har-

mony, it is guaranteed to converge to a local optimum

of harmony. The input to an attractor net can either

specify the initial state of the net, or it can provide

biases—Wxed input—to each unit; in the latter case,

the biases reshape the landscape such that the best-

matching attractor has maximum harmony, and is likely

to be found for a wide range of initial network states.

The connection strengths (including biases) in the

network determine the harmony landscape, which in

turn determines the attractors and the shape of the

attractor basins. When a set of attractor patterns are

stored in a net, gang eVects are typically observed: the

shapes of attractor basins are inXuenced by the proxim-

ity of attractors to one another (Zemel and Mozer 2001).

In traditional attractor nets, the knowledge about

each attractor is distributed over the connectivity pat-

tern of the entire network. As a result, sculpting the

attractor landscape is tricky, and often leads to spurious

(undesired) attractors and ill-conditioned (e.g. very nar-

row) attractor basins. To overcome these limitations, a

localist attractor net has been formulated (Zemel and

Mozer 2001) that consists of a set of state units and a set

of attractor units, one per attractor. Each attractor unit

draws the state toward its attractor, with the attractors

closer to the state having a greater inXuence. The loc-

alist attractor net is easily conWgured to obtain a desired

set of attractors. The dynamics of a localist attractor net,

like its distributed counterpart, can be interpreted as

climbing uphill in harmony.

Attractor nets can also be conceptualized from a

probabilistic perspective. If the net has intrinsically sto-

chastic dynamics (e.g. Boltzmann machines, or back-

propagation networks with added noise), each point in

 (a)  (b)  (c)  

Fig. A26. (a) The activation state of a two-unit recurrent network can be depicted as a point in a

two-dimensional space. If activation is bounded, e.g. to lie between 0 and 1, then the state lies

within a box. The solid curve depicts the time-varying trajectory of the state, where the arrow

represents the forward flow of time. (b) A state space with three attractors carved into attractor

basins (dotted lines). (c) A harmony landscape over the state space with three attractors.
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the state space can be characterized in terms of the

probability of reaching each attractor from that

point—a discrete probability distribution over attract-

ors. The points far from any attractor have a nearly

uniform distribution (maximum entropy), whereas the

attractors themselves are represented by a distribution

with probability 1.0 for the attractor and probability 0.0

for any other attractor (minimum entropy). This con-

ceptualization allows for one to abstract away from

neural net representations and dynamics, and to charac-

terize the dynamics as entropy minimization (Cola-

grosso and Mozer 2004).

3. Relationship between attractor states and

conscious states

Theorists have identiWed certain properties that are

claimed to be prerequisites or characteristics

of conscious mental states. Attractors share these prop-

erties, as we elaborate here.

Conscious perceptual states have been conceived of

as interpretations of noisy or ambiguous sensory input

(Marcel 1983). For example, the Necker cube admits two

possible interpretations, and perceptual awareness Xips

between these interpretations (see *multistable percep-

tion). Searle (1992) focuses on interpretation in terms of

pre-existing categories. One can conceive of attractors as

interpretations or learned categories, and the dynamics

of an attractor net as mapping a noisy or partial input to

the most appropriate interpretation. Attractor dynamics

are highly non-linear: two similar initial states may lead

to distant attractors. This type of non-linearity allows

two similar inputs to yield distinct interpretations. The

Necker cube is an extreme case in which a single

input—lying on the boundary between two attractor

basins—can lead to two diVerent interpretations.

(Many attractor nets assume intrinsic noise to break

symmetry for ambiguous inputs.)

Conscious states have been characterized as high-

quality representations (Farah 1994, Munakata 2001).

The notion of quality is ill deWned, but essentially, a

high-quality representation should be capable of trigger-

ing the correct representations and responses further

along the processing stream; in the terminology of

the consciousness literature, such a representation is

accessible. Quality is not an intrinsic property of a repre-

sentation, but comes about by virtue of how that rep-

resentation aVects subsequent processing stages, which

in turn is dependent on whether past learning has asso-

ciated the representation with the appropriate eVects.

From this deWnition, attractors are high quality. Attract-

ors come into existence because they correspond to

states the system has learned about in the past. An

attractor net cleans up a noisy input, yielding a pattern

that corresponds to a previously experienced state. Be-

cause of this past experience, later stages of processing

receiving input from the attractor net are likely to

have learned how to produce appropriate responses to

attractor states. When cognitive operations involve mul-

tiple steps, the quality of a representation is critical:

without the sort of clean-up operation performed by

an attractor net, representations degrade further at

each step (Mathis and Mozer 1995).

Temporal stability of neural states is often associated

with consciousness (e.g. Taylor 1998). Attractors have

the property of temporal stability. Once the dynamics

of the attractor net lead to an attractor, the state the

state of the network persists until the network is reset or

is perturbed by a diVerent input.

Conscious states are generally considered to be expli-

cit (e.g. Baars 1989, Dehaene and Naccache 2001), mean-

ing that they are instantiated as patterns of neural

activity, in contrast to implicit representations, which

are patterns of connectivity. An attractor net encodes

its attractors implicitly, but the current attractor state is

explicit.

Conscious states might arise at the interface between

sub-symbolic and symbolic processing (Smolensky 1988,

Cleeremans and Jiménez 2002). From a connectionist

perspective, perceptual processes are intrinsically sub-

symbolic, but yield representations of object identities

and categories that subserve subsequent symbolic pro-

cessing. This view Wts in well with the fact that attractor

nets typically map a continuous activation space to a

discrete set of alternatives (Fig. A26b), which can be

viewed as a mapping from sub-symbolic to symbolic

representations. If conscious states are indeed symbolic,

then they should be all-or-none. Studies have indeed

suggested discrete, all-or-none states of consciousness

(Sergent and Dehaene 2004), although others consider

consciousness to be a graded phenomenon (Farah 1994,

Munakata 2001, Cleeremans and Jiménez 2002).

4. Attractor networks and theories of consciousness

Grossberg’s adaptive resonance theory, proposed in 1976,

describes an attractor network that achieves resonant

states between bottom-up information from the world

and top-down expectations. Grossberg (1999) subse-

quently made the claim that conscious states are a

subset of resonant (attractor) states. From *functional

brain imaging data, evidence is also consistent with the

notion that conscious states arise from resonant circuits

linking temporal, parietal, and prefrontal cortical areas

(Lumer and Rees 1999).

Many computational theories of consciousness

have argued that attractors have the right functional

characteristics to serve as the computational *correlate
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of consciousness. Rumelhart et al. (1986) and Smolensky

(1988) Wrst proposed that conscious mental states may

correspond to stable states of an attractor network. Like

subsequent theorists, they envision an attractor net

deWned over multiple cortical regions thereby able to

capture global cortical coherence. Farah et al. (1993)

describe attractor nets as allowing stimuli to be inte-

grated into a global information-processing state which

corresponds with consciousness. Other theorists are less

explicit in describing attractor nets, yet focus on key

properties of attractor nets, such as self-sustaining activa-

tion patterns (Dehaene and Naccache 2001), dynamic

competitions among coalitions of neurons (Crick and

Koch 2003), and non-linear bifurcations in neural activity

(Sergent and Dehaene 2004). Although many theories

simply postulate that stable, high-quality representa-

tions—such as attractors—are associated with awareness,

some models to show that accessibility and reportability

is an emergent property of such representations

(Mathis and Mozer 1996, Colagrosso and Mozer 2004).
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Cleeremans, A. and Jiménez, L. (2002). ‘Implicit learning and

consciousness: a graded, dynamic perspective’. In French, R.

M. and Cleeremans, A. (eds) Implicit Learning and Conscious-

ness.

Crick, F. and Koch, C. (2003). ‘A framework for consciousness’.

Nature Neuroscience, 6.

Dehaene S. and Naccache L. (2001). ‘Towards a cognitive

neuroscience of consciousness: basic evidence and a work-

space framework’. Cognition, 79.

Farah, M. J. (1994). ‘Visual perception and visual awareness after

brain damage: A tutorial overview’. In Umiltà, C. and Mos-
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autism. The term ‘autism’, from the Greek word mean-

ing self, was Wrst applied to children with notably abnor-

mal social development by Leo Kanner (1943) and Hans

Asperger (1944)—who took the term from Bleuler’s

(1911) description of withdrawal and self-absorption in

*schizophrenia.

Autism is a neurodevelopmental disorder diagnosed

by the presence of qualitative social and communicative

impairments and restricted and repetitive interests and

activities, manifest before age three. A child with autism

may be silent and socially aloof, and line up toys repeti-

tively; an adult with high-functioning autism may be

verbally Xuent in a pedantic monologuing way, socially

over-eager in a gauche way, and repetitive in his narrow

interest in, say, electricity pylons. Since the range of

manifestations of this ‘triad’ of impairments varies

with age and ability, the notion of autism spectrum

disorders (ASD) has become popular. This spectrum

includes Asperger’s syndrome, in which the key features

of autism are present but there is no general intellectual

or language delay. ASDs are not as rare as once thought;

perhaps as many as 1 in 1000 individuals may have

autism, and almost 1 in 100 may have an ASD. The

majority of aVected individuals are male, and many

people with autism also have general intellectual im-

pairment. Search for the causes of ASD continues; while

there is a strong genetic component (autism is among

the most highly heritable psychiatric disorders), no spe-

ciWc genes or brain basis have as yet been identiWed.

Prominent among psychological accounts of the dis-

tinctive behavioural impairments in ASD is the idea of

deWcits in *theory of mind or mentalizing: the everyday

ability to attribute beliefs, desires, and other mental

states to self and others in order to explain and predict

behaviour. There is now overwhelming evidence from a

variety of simple tests that most people with ASD have

diYculty knowing what others think and feel (reviewed
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